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Faculty of Information Technology
Brno University of Technology

Brno, Czech Republic
matousp@fit.vutbr.cz
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Abstract—Detection of malware communications is limited due

to encryption. Malware control, updates, and distribution are

encapsulated in TLS tunnels, making it difficult to distinguish

between malicious and benign transmissions. One way, how to

detect malware communication, is to analyze the TLS handshake

and obtain so-called JA4+ fingerprints. This report analyses

the effectiveness of JA4+ fingerprints for malware detection,

focusing specifically on the JA4, JA4S, and JA4X fingerprints

and their accuracy. It examines the process of creating malware

fingerprints and explores the uniqueness of these fingerprints

across different malware families and their ability to distinguish

between malicious and benign applications. By examining the

overlap and uniqueness, the study evaluates the effectiveness

of using JA4+ fingerprints to detect malware in encrypted

communications.

Index Terms—malware detection, TLS fingerprinting, JA4+,

network monitoring, cyber security

I. INTRODUCTION

Detecting malware in encrypted traffic is a major cyber
security challenge. Traditional methods of detecting mali-
cious activity become less effective when communications
are encrypted. One way to analyze encrypted communications
is through TLS fingerprinting, which identifies and tracks
devices or software by analyzing the unique characteristics
and patterns of the Transport Layer Security (TLS) handshake
protocol, see [1], [2]. The basic idea behind TLS fingerprinting
is that when negotiating TLS parameters, each side provides
a unique set of security parameters that characterise the ap-
plication. By obtaining TLS fingerprints of malware samples,
we are able to detect malware communication by monitoring
only the first packets of the TLS handshakes.

This report analyses the effectiveness of JA4+ fingerprints
[3], a collection of the TLS fingerprinting methods, in de-
tecting malware by calculating coverage and uniqueness mea-
sures on a dataset consisting of malware communications and
encrypted communication instances from mobile and desktop
applications. The paper presents preliminary results showing
the ability of different types of fingerprints to discriminate
between malicious and malware-encrypted communications,
and the ability to identify individual malware families.

II. RELATED WORK

Most approaches to malware detection in encrypted traffic
use machine learning based on features extracted from the TLS

handshake [4], [5], additional protocols such as HTTP and
DNS [6], or flow statistics [7], [8]. Other approaches include
graph-based methods [9] or neural networks [10], [11].

TLS fingerprinting methods are popular because they are
easy to implement and resource-efficient. Anderson et al. [12]
conducted a comprehensive study and achieved 99.6% accu-
racy in detecting malware by combining TLS features such as
cipher suites and extensions with flow statistics. Their analysis
included 18 malware families with 5,623 samples, examining
cipher suites, key lengths, certificate validity, and more. They
combined the TLS characteristics with flow metadata and
server certificates. While effective, their approach requires
more processing than simpler JA4+ fingerprinting.

In later work, Anderson and McGrew [13] used Levenshtein
distance to track TLS usage trends, focusing on general
patterns rather than specific applications. They analysed only
the TLS Client Hello and introduced equivalence classes for
destination features such as IP address and server name. Using
a weighted Naive Bayes classifier for approximate fingerprint
matching, they achieved an F1 score of 0.96-0.99. For malware
detection, their precision was 0.63-0.99 and recall 0.64-0.88.

The reliability of TLS fingerprinting for mobile applications
was investigated by Matousek et al. [14], where the authors
observed the stability and accuracy of TLS fingerprints. Their
work highlights the importance of data cleaning, where TLS
noise (advertising, tracking and analytics services) covers
about 50% of TLS communications with TLS fingerprints
overlapping between applications. They also show that for
mobile application identification, the best results are achieved
by combining JA3 and JA3S fingerprints with SNI.

Althouse et al. [3] propose JA4/S fingerprints, claiming
that they are more accurate than JA3, and that specialised
fingerprints such as JA4X can identify encrypted malware
communications. In this paper, we present experiments with
JA4+ fingerprints to evaluate the capabilities of JA4 finger-
prints for malware detection in encrypted traffic.

III. PRELIMINARIES OF THE JA4+ FINGERPRINTS

JA4+ is a collection of TLS fingerprints developed by
John Althouse et al. in 2023 [3] intended to replace the
JA3 fingerprints [15]. TLS fingerprinting involves extracting
specific attributes from the TLS handshake and hashing them
to identify applications in encrypted traffic [12].
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TLS fingerprinting identifies applications by analyzing the
unique security parameters that each client and server negoti-
ate during the TLS handshake. These parameters can create
unique fingerprints for specific applications and versions.
By comparing observed TLS handshakes with a database of
known fingerprints, including those of common applications
and malware, we can identify applications in encrypted traf-
fic. However, because some applications share fingerprints,
additional attributes such as Server Name Indication (SNI) are
required for more accurate identification [14], [16].

A. JA4 and JA4S Fingerprints
JA4 and JA4S fingerprints consist of three parts a b c. The

JA4 fingerprint includes the following TLS attributes: protocol
type (TLS or QUIC), TLS handshake protocol version, sorted
list of cipher suites offered by the client, sorted list of
extensions, Server Name Indicator (SNI) flag, Application
Layer Protocol Negotiation (ALPN), supported versions, and
signature algorithms. Some of these values are inserted directly
into the JA4 fingerprints, others are sorted or hashed, see Fig.1.

JA4_a = protocol (TLS/QUIC),version,SNI flag,no. of cipher suites, no. of extensions, ALPN
JA4_b = sorted and hashed cipher suites
JA4_c = sorted and hashed extensions except SNI and ALPN

Eg. JA4 = t12d1909h2_d83cc789557e_7af1ed941c26

JA4S_a = protocol (TLS/QUIC), version, no. of extensions, ALPN chosen
JA4S_b = cipher suite chosen
JA4S_c = unsorted and hashed extensions chosen by the server

E.g. JA4S = t1206h2_c02c_e1dda4771ae8

Fig. 1: Format of JA4 and JA4S fingerprints

The JA4S fingerprint represents the server-side TLS config-
uration and includes TLS attributes similar to the JA4 finger-
print, with the exception of SNI and signature algorithms.

B. JA4X Fingerprints
JA4X fingerprints are used to detect malware by analyzing

selected attributes of X.509 certificates sent by the TLS
server during the handshake [3]. Unlike JA4 and JA4S, JA4X
fingerprinting focuses on how the certificate is generated,
rather than its specific values. Malware authors often use the
same tool to create spoofed certificates, so these certificates
share a common JA4X fingerprint that reflects the generator,
regardless of changes to the issuer or subject names.

Issuer: cn = Global Sign Organization, ou = Root CA, o=Global Sign, c=BE
Subject: cn= Global Sign Organization, o=Global Sign, c= BE
Extensions: keyUsage, basicConstraints, subjectKeyIdentifier,

JA4X_a = hash256(cn,ou,o,c)
JA4X_b = hash256(cn,o,c)
JA4X_c = hash256(keyUsage,basicConstraints,subjectKeyIdentifier)

Eg. JA4X = 7d5dbb3783b4_a373a9f83c6b_6bf6e737b69b

Fig. 2: Example of the JA4X fingerprinting

The JA4X fingerprinting involves observing the format of
three certificate attributes: the issuer name, the subject name
and a list of certificate extensions. The issuer or subject
name is formally a sequence of X.500 objects called the

Id Desktop Malware Id Mobile Malware

0 agenttesla 33 3d-skin-editor-for-minecraft
1 asyncrat 34 3d-skin-editor-for-minecraft-2
2 azorult 35 alaa-win-play
3 bazarbackdoor 36 auto-click-repeater
4 darkcomet 37 bank-bingo
5 dridex 38 bitcoin-master
6 emotet 39 cashzine
7 formbook 40 colo-chess
8 gozi-ifsb 41 crazy-magic-ball
9 hawkeye 42 daily-step
10 hawkeye-reborn 43 get-rich-scanner
11 icedid 44 happy-2048
12 lokibot 45 hexa-pop-link-2048
13 masslogger 46 jelly-connect
14 matiex 47 letter-link
15 metasploit 48 macaron-boom
16 modiloader 49 macaron-match
17 nanocore 50 mega-coin-dozer
18 netwire 51 mega-wins-slot
19 njrat 52 picpro
20 pony 53 play-box
21 qakbot 54 royal-dice-party
22 qnodeservice 55 smart-walk
23 raccoon 56 star-quiz
24 remcos 57 tiler-master
25 revengerat 58 track-your-sleep
26 smokeloader 59 treasure-scanner
27 sodinokibi 60 vfly
28 trickbot 61 vibetik
29 upatre
30 wannacry
31 yunsip
32 zloader

TABLE I: List of malware families in tested dataset

Relative Distinguished Name (RDN), e.g., common name
= ”GlobalSign Organization”, organization = ”GlobalSign”,
country = ”BE”. The JA4X fingerprint takes the sequence
of RDN elements, i.e., common name (cn), organization (o),
country (c), without values. The elements (their OIDs) are
concatenated and hashed using SHA256. The result is a part
of the JA4X fingerprint. The JA4X fingerprint also consists of
three parts a b c as shown in Fig. 2.

Note that the TLS server typically sends not only its
own certificate but also certificates from parent Certificate
Authorities (CAs), resulting in multiple JA4X fingerprints per
TLS connection. However, in TLS 1.3 and above, certificates
are encrypted, so JA4X fingerprints are not available.

IV. TESTING DATASET

The dataset for the experiments was created using malware
analysis sandbox for desktop malware and an Android Virtual
Device (AVD) emulator for mobile malware. These tools
collected network traces of isolated malware communications.
To test the effectiveness of JA4+ fingerprints in identifying
malware communications, the raw dataset was processed to
extract TLS-related features, including JA4+ hash values. All
annotated datasets are available on GitHub1.

1) Generating Desktop Malware Fingerprints: The mal-
ware communication dataset was generated using the Tria.ge
malware analysis sandbox. This framework analyses custom

1See https://github.com/matousp/malware-analysis [Sept 2024].
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Id Application Id Application Id Application

0 amazon-music 21 tor 42 netflix
1 amplibraryagent 22 trello 43 packeta
2 appletv 23 whatsapp 44 reddit
3 chrome 24 zoom 45 regiojet
4 firefox 25 accuweather 46 seznam
5 fournet 26 alza 47 shazam
6 gamebar 27 cestovne-poriadky 48 signal
7 hp 28 discord 49 snapchat
8 itunes 29 disneyplus 50 spotify
9 maps 30 duolingo 51 tiktok
10 messenger 31 facebook 52 tmobile
11 ms-teams 32 foodora 53 tor
12 msedge 33 gmail 54 twitter
13 msmpeng 34 idos 55 uc-browser
14 omencmdcenter 35 instagram 56 viber
15 primevideo 36 linkedin 57 whatsup
16 runtimebroker 37 mapycz 58 wolt
17 sky-go 38 messenger 59 youtube
18 skype 39 moje-vut
19 spotify 40 mujvlak
20 telegram 41 navlak

TABLE II: Desktop (0-24) and mobile (25-59) applications

malware samples and provides results from previously up-
loaded samples, categorising each positive sample by malware
family. We used the Tria.ge public API to collect samples
from 33 different malware families (see Table I, left column),
with 50 samples requested per family. Each sample analysis
report, in JSON format, included indicators of compromise
such as domain names, IP addresses, and URLs. Communi-
cation traces of malware execution were collected, but these
traces included all host communication. To isolate malware
communication, the traces were filtered using reported IP
addresses. The final dataset, organised by the malware family,
contains communication traces in PCAP files annotated with
malware family names as labels for network connections.

2) Generating Mobile Malware Fingerprints: For the mo-
bile malware analysis, we focused on dangerous and infected
apps reported by sources such as McAfee and Doctor Web.
We obtained APKs with infected apps, uploaded them to
an Android Virtual Device (AVD) for testing, and captured
network communications in PCAP files. We extracted TLS
communications and filtered out unrelated TLS sessions based
on SNI. The remaining TLS connections were labelled with
the malware name. In total, we analysed 31 different mobile
malware applications, as shown in Table I, right column.

3) Non-malware Applications: For comparison, we used an
annotated dataset of common desktop and mobile applications.
The dataset contained 25 desktop and 35 mobile applications,
see Table II. For further analysis, we extracted TLS connec-
tions, computed JA4+ fingerprints and added annotations.

V. FINGERPRINTS ANALYSIS

This study focuses on properties that capture the ability to
identify the malware families based on JA4 fingerprints:

• The uniqueness property assumes that the fingerprints
should be able to distinguish between two different mal-
ware families. Two borderline cases can be identified.
Firstly, malware families can share the same fingerprint,
making them indistinguishable. Alternatively, no two

malware families can share the same fingerprint, making
each family distinguishable.

• The stability property requires that the fingerprints of a
malware family should remain sufficiently similar be-
tween two observations to be recognisable. Malware
fingerprints evolve as instances of malware within the
same family change.

We first analysed the uniqueness of malware families by
comparing their identified fingerprints with those of other fam-
ilies, assessing the ability to identify each family based on TLS
fingerprints alone. We then compared malware fingerprints
with those of benign applications to determine whether TLS
fingerprinting can effectively distinguish between malicious
and benign encrypted communications.

A. Inter-family Fingerprinting
For each malware family, we collected fingerprints and

identified any overlap between them, analyzing JA4 finger-
prints and their combinations such as JA4+JA4S, JA4+JA4X
and JA4+SNI. Figures 3(a-e) show the relationships between
malware families based on shared fingerprints, with columns
and rows representing different families and darker colours
indicating a higher ratio of shared fingerprints. The lower left
quadrant represents desktop malware relationships, the upper
right shows mobile malware, and the other quadrants show
cross-platform relationships.

The data shows significant overlap in fingerprints between
malware families on both the desktop and mobile platforms,
but minimal overlap between these two platforms. JA4 fin-
gerprints alone can only uniquely identify a few families (see
Fig. 3a). Adding JA4S (Fig. 3b) or JA4X improves the results
slightly. The best improvement comes from adding SNI (Fig.
3d), but many fingerprints are still shared between different
malware families. Fig. 3e illustrates the JA4X fingerprint,
which is designed to detect malware using information from
certificates. The figure shows that many malware families
share the same JA4X fingerprints, confirming the authors’
hypothesis. However, it also shows that without additional
information it is difficult to distinguish between different
malware families using this method alone.

B. Malware to Application Discrimination
We also explored the use of fingerprints to distinguish

between malicious and benign application communication. We
computed fingerprints for desktop and mobile applications and
analysed the overlap with malware fingerprints. The results
are shown in Figures 3(f-i), where the columns represent 62
malware families (0-61), see Table III, and the rows represent
25 desktop and 35 mobile applications (0-59), see Table IV.

In the JA4 fingerprint analysis (Figure 3f), many desktop
malware families share fingerprints with desktop applications,
and mobile malware shares fingerprints with mobile appli-
cations, with limited overlap between platforms. Combining
client and server fingerprints (Figure 3g) or using JA4 with
JA4X hashes (Figure 3h) improves results. Adding SNI to the
JA4 fingerprint significantly reduces collisions (Figure 3i).
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(a) Malware JA4 fingerprints (b) Malware JA4+JA4S fingerprints (c) Malware JA4+JA4X fingerprints

(d) Malware JA4+SNI fingerprints (e) Malware JA4X fingerprints (f) Malware/Apps JA4 fingerprints

(g) Malware/Apps JA4+JA4S fingerprints (h) Malware/Apps JA4+JA4X fingerprints (i) Malware/Apps JA4+SNI fingerprints

Fig. 3: Fingerprint collision matrix

C. Statistical Analysis

Next, we performed a statistical analysis of the calculated
fingerprints to determine the following three characteristics:

• Uniqueness: represents the percentage of fingerprints that
are unique to only a single application/malware, i.e., these
fingerprints are not shared between applications.

• Coverage: is the percentage of applications/malware that
has at least one unique fingerprint.

• Efficiency: is a measure that provides an average num-
ber of applications/malware assigned to fingerprints. Let
i = 1 . . . n be the number of unique fingerprints and let
the function f(i) map each fingerprint to an application.
Then the efficiency is E =

Pn
i=1 f(i)
n . The best efficiency

is represented by a value of 1, which means that all
fingerprints uniquely identify the applications.

Fingerprint type Total Unique Covered malware Efficiency

JA4 119 43.9% 27.4% 4.15
JA4S 260 49.0% 33.9% 4.04
JA4+JA4S 552 59.0% 53.2% 2.52
JA4+JA4S+SNI 3053 87.0% 79.0% 1.36

TABLE III: Efficiency of TLS fingerprints on malware
Table III shows the uniqueness of different fingerprint

types and their combinations on our malware dataset and
the percentage of malware families they uniquely identify.
TLS connections to analytics, tracking, or advertising servers
(noise) have been filtered out. For JA4 fingerprints, we used as
much data as possible (12,722 connections), including incom-
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plete data. For other fingerprints, only complete connections
(11,141) were used. The uniqueness of JA4+JA4S+SNI is
about 87% and they cover almost 80% of the malware families.

Fingerprint type Total Unique Covered malware Covered apps Efficiency

JA4 160 46.3% 21.0% 28.6% 4.17
JA4S 293 33.8% 27.4% 22.2% 4.62
JA4+JA4S 775 64.4% 50.0% 61.9% 2.30
JA4+JA4S+SNI 4032 89.3% 77.4% 95.2% 1.29

TABLE IV: Efficiency of TLS fingerprints on malware-apps

Table IV shows how the ability to identify malware families
changes when desktop and mobile application fingerprints are
combined. As some fingerprints are shared between malware
and desktop applications, the malware coverage drops to
27.4% for JA4S, to 50.0% for JA4S+JA4S, and to 77.4% for
JA4+JA4S+SNI. This is mainly caused by Android malware
apps with similar JA4S fingerprints as for benign Android
apps, see also Fig. 3f-3i. However, if we add SNI, the malware
coverage is 77.4%. The coverage of benign applications is
95.2% and the the overall efficiency is 1.29, which is better
than for malware alone in Table III.

Fingerprint type Total Shared

JA4 160 21.25%
JA4S 293 25.94%
JA4+JA4S 775 9.94%
JA4+JA4S+SNI 1032 1.02%
JA4X1 59 32.20%
JA4X1+JA4X2 78 29.5%
JA4X1+JA4X2+JA4X3 80 12.5%

TABLE V: Overlap of malware and application fingerprints

Finally, Table V presents the percentage of fingerprints
shared by malware and application connections. Using a
combination of JA4+JA4S+SNI, there is only 1.02% overlap
between malware and benign applications which helps to
distinguish these two groups of encrypted traffic. We can
also see that JA4X fingerprints have a large overlap for the
direct Certification Authority (JA4X1) and its closest parent
(JA4X2). However, only 27% of the tested TLS connections
contained JA4X1 fingerprints, 15.7% had JA4X2 fingerprints,
and 11.95% had JA4X3 fingerprints. This shows that the
combination of JA4+JA4S+SNI is more useful and effective
in detecting malware than JA4X hashes.

VI. CONCLUSION

This report investigates the effectiveness of JA4+ finger-
prints in malware detection. The experimental results show
that the combination of JA4, JA4S, and SNI gives the best
results for malware detection. These combined fingerprints are
highly unique, covering approximately 80% of known malware
families.

Given a dataset of malware samples, we can analyse mal-
ware communications and extract JA4+ fingerprints and addi-
tional TLS characteristics. The resulting database of malware
JA4+ fingerprints can be used by network monitoring devices
to detect malware communication in real-time.

Based on our experiments, we also demonstrated that JA4X
fingerprints are of limited use, as they are present in less than

a third of TLS connections, and the same JA4X fingerprints
are shared between malware and benign applications.
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