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Abstract. The widespread adoption and application of Machine Learn-
ing (ML) based Intrusion Detection Systems (IDS) has increased the
flexibility and efficiency of automated cyber attack detection in smart
grid systems. However, the emergence of such IDSes has led to a new
attack vector against learning models, known as adversarial attacks.
Such attacks could have serious effects in smart grid systems since adver-
saries can circumvent detection by IDS. This could result in detection
of attacks. From the existing literature, a lot of research proposes threat
models that are inappropriate for generating realistic adversarial attacks.
In this research, we model realistic adversarial attacks with a focus on
real attacker capabilities that are feasible to launch adversarial attacks.
We discuss how adversarial learning may be used to target ML models
using the Jacobian-based Saliency Map Attack (JSMA) and the Fast
Gradient Sign Method (FGSM). A power system dataset generated from
a smart grid testbed was used for testing the models. The performance
of the trained classifiers, Random Forest, XGBoost, and Naive Bayes,
dropped when adversarial instances were introduced. The outcomes of
this paper are useful for helping researchers model realistic scenarios to
avoid dealing with hypothetical problems.

Keywords: Intrusion Detection Systems · Adversarial Attacks ·
Critical Infrastructure · Machine Learning · Smart Grid Systems

1 Introduction

Smart electrical grids are essential in the digital age of hyper-connected Criti-
cal Infrastructures (CIs), providing benefits including improved grid resilience,
efficient energy distribution, and smart load management [19]. The adoption
of technology enablers such as machine learning (ML), the Internet of Things
(IoT), 5G, and Artificial Intelligence (AI) is critical to the life cycle of smart
grids. However, this technological breakthrough presents serious cybersecurity
concerns, which might have fatal implications, particularly in the energy sector.
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Given the significance of these systems, they have become a desirable target
for attackers. By the fact that these systems control physical processes, cyber-
attacks may have far-reaching effects on the environment in which they operate
and their users [4].

Advanced Persistent Threats (APTs) and multi-step attacks against CIs, like
the smart electrical grid, can cause service failures, financial losses, and some-
times tragic accidents. Examples of APT [4] campaigns include Hafnium, Indus-
troyer, the Lazarus Group, and SolarWinds (Sunburst). In 2015, Industroyer
lead to a blackout across Ukraine. The NotPetya ransomware caused significant
financial damage for various energy-related organizations, making it a notable
cybersecurity incident. A more recent CI attack was reported in Denmark in
May 2023 where attackers compromised 22 energy organizations in the largest
coordinated attack against Denmark’s CI [32]. To launch the attacks, hackers
exploited multiple vulnerabilities in the firewall for initial access, executing code
and gaining complete control over the impacted systems. The attackers suc-
cessfully compromised 11 energy organizations by executing commands on the
vulnerable firewall to obtain device configurations and usernames and thus access
to the CI behind it. In this light, security issues about such systems have become
a serious concern globally. This prompts the development of not only a safe but
also a robust technique that can effectively identify and protect CIs like smart
grid networks from cyber attacks.

Although various security methods exist for traditional IT systems, integrat-
ing them into smart grid networks is difficult because the monitoring devices have
limited resources and the inability to support contemporary security measures.
Improvements to security are thus more likely to be brought about by passive
security surveillance and other such security approaches. This has resulted in a
significant rise in research into more tailor-made IDSes that monitor networks to
detect attacks that could disrupt the operation of CIs [20]. IDSes are increasingly
being integrated with ML due to their efficiency in attack detection attacks. How-
ever, with the introduction of these systems, a new attack vector emerges, such
that even the trained models can be attacked. Adversarial Machine Learning
(AdvML) refers to deploying attacks against ML systems. Small perturbations
can be applied automatically to unseen data points that can result in the model
crossing a decision boundary and then classify malicious data as normal.

The existence of such dynamics implies that CI, such as smart grid systems
that use ML-IDSes, may be exposed to cyberattacks. AdvML can be used to
manipulate data from the Intelligent Electronic Devices (IEDs) that switch cir-
cuit breakers or other devices. IEDs introduce perturbations that classify mali-
cious data as benign, hence circumventing the IDS. As a result, there could be
delays in detecting attacks, leaks of information, financial losses, or sometimes
casualties. As ML-based detection methods grow more prevalent, attackers may
have a stronger motive to target them. As a result, they require extensive eval-
uation against AdvML attacks.
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1.1 Motivation and Contribution

Our research is motivated by the recognition that many research papers design,
develop, and evaluate IDS in adversarial settings without considering the realism
of the proposed attacks or explaining how they can be launched in reality. Many
of the proposed research works assume a threat model and report the impact of
the attack while providing little or no thought to the viability of the considered
perturbation. Moreover, some general techniques are applied to generate adver-
sarial attacks to manipulate the network features in a way that is inconsistent
with actual network traffic [3].

Some researchers, for instance, take the view that adversaries are fully aware
of the target system [16] while others assume an attacker can attempt as often as
possible to breach past the Network Intrusion Detection Systems (NIDS) with-
out getting detected [30]. When generating scenarios in cybersecurity, it is crit-
ical to concentrate on the actual problem and adversary. However, it is equally
important to characterize how effective all adversarial attacks are on any ML
to develop a better detector. Failing to do so could misinform defenders to allo-
cate resources against false cases or hypothetical problems, potentially diverting
attention from more critical issues. The abundance of research on adversarial
attacks might inadvertently give the impression that any ML-IDS is an unreli-
able defensive system, contrary to the actual scenario.

Additionally, in a real communication network, manipulating an ML model
does not ensure a successful cyberattack. In this study, we propose a more real-
istic approach to modelling adversarial attacks against ML-IDS for smart grid
communication. We identify the necessary conditions and capabilities for the
attacker to carry out such attacks. More importantly, this study recreates a real-
istic dataset gathered from a power system testbed, along with a realistic attack
model and assumptions. This research will make the following contributions:

– Detailed review of the feasibility constraints needed to model valid adversar-
ial perturbations on data used as input to an ML-IDS while preserving the
network attack’s fundamental logic.

– Generating evasion attacks for smart grid network communication capable of
evading ML-IDS detection with limited knowledge of the target NIDS.

– Demonstrate the effectiveness of the evasion attack on ML-IDS.

2 Background and Related Work

This section introduces the fundamental ideas of adversarial machine learning.
Then, we discuss related work that has utilized adversarial evasion techniques to
illustrate how effective they are in evading or reducing the performance of IDS
models. Finally, we outline the limitations of the network traffic and detail how
the limitations can be upheld for the network to generate an adversarial flow
that is valid.
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2.1 Adversarial Machine Learning

An adversarial attack refers to the application of small and undetectable alter-
ations to an ML detector [29]. In this case, the altered samples must not have
a huge difference from the initial sample to maintain the basic malicious logic
and avoid triggering other detection methods. In this research, we focus on eva-
sion attacks. In the event of an evasion attack, the input is manipulated by the
attacker in an attempt to trick the model and cause misclassification. There are
several approaches to generating adversarial samples, and they vary in terms of
their performance, generation speed, and complexity. The easiest way to create
adversarial samples is by manually changing the input data points one by one.
In such cases, it can take a lot of time to perturb manually, especially with large
datasets, and the results could be inaccurate. Therefore, more complicated meth-
ods can be used to identify and analyze features automatically by discriminating
target values.

Papernot et al. [28] and Goodfellow et al. [13] introduced Jacobian-based
Saliency Map Attack (JSMA) and Fast Gradient Sign Method (FGSM) as pop-
ular methods for creating perturbed samples automatically. Both methods pre-
sume that adding small perturbations (δ) to the original sample (X) and can
result in adversarial characteristics (X* = X + δ). This implies that X* will be
misclassified by the target model.

2.2 Fast Gradient Sign Method (FGSM)

The FGSM method for creating adversarial instances is based on the gradient
sign method with backpropagation. It is an untargeted attack approach used
to obtain max-norm constrained perturbation (η) expressed in Eq. 1. Here (θ)
represents the model parameter, x is the input vector to the model, y is the
associated label of the input, and J(θ, x, y) is the cost function. FGSM generates
perturbation samples with a small noise parameter ε [13].

adv−x = x + ε ∗ sign (∇xJ(θ, x, y)) (1)

2.3 Jacobian-Based Saliency Map Attack (JSMA)

The Jacobian matrix, on the other hand, serves as the foundation for the JSMA
technique. The JSMA method is utilized to compute the forward derivative of
the cost function f(x). The following formula computes the Jacobian of the neural
network function F using input X :

JF =
∂F (X)

∂X
(2)

Unlike the FGSM, JSMA operates differently from other adversarial attacks
by leveraging saliency maps. These maps visually represent the prediction pro-
cess of a classification model for each pixel, illustrating how each pixel influences
the model prediction of a specific class. JSMA has various advantages as well as
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disadvantages. One advantage of using JSMA is its ability to make small per-
turbations while maintaining high success rates. These minimal changes make
it easy to control attacks based on their intensity within a specific ML-IDS.
However, JSMA is more computationally intensive than FGSM [28].

2.4 Major Adversarial Attacks Against the NIDS

This section reviews existing research that used adversarial evasion methods
to reduce the performance of ML-IDS models. The existing literature identifies
detection methods as vulnerable to generic evasive adversarial attacks, which are
considered significant threats. However, the previous research failed to evaluate
the effectiveness of generated adversarial traffic for real-world attacks.

In their research, Warzyński and Kołaczek [37] demonstrated that a Deep
Neural Networks (DNN) binary classifier on the NSL-KDD1 dataset [35] was
degraded by a FGSM attack. Further, they confirmed that network traffic can
also be degraded by the FGSM attack, although this attack was first developed
for image recognition. Using the Mirai dataset2, Clements et al. [9] assessed
Kitsune’s resistance to FGSM attacks as a lightweight intrusion detection sys-
tem for IoT networks. Wang [36] discovered that FGSM attacks achieve various
degrees of success and use different feature patterns. The author suggested that
perturbing specific features may increase the vulnerability of IDS to adversarial
traffic. Nevertheless, the research does not show the features had been altered
to confirm if the perturbations produced consistent traffic instances.

Asimopoulos et al. [6] introduced an AI-powered IDS for the IEC 60870-5-
104 protocol. To test the model, the authors use four ML methods: (a) Decision
Tree, (b) RF, (c) eXtreme Gradient Boosting (XGBoost), and (d) Multilayer
Perceptron (MLP). The authors used a Conditional Tabular Generative Adver-
sarial Network (CTGAN) adversarial attack generator and the FGSM to assess
the possible impact of adversarial attacks on IDS detection performance. In
comparison to the CTGAN datasets, the examined models DT, XGBoost, RF,
and MLP fared better on the FGSM adversarial datasets. However, the authors
did not discuss the realistic implementation of adversarial attacks in their case
studies. Additionally, they did not explain how to set the optimum level of per-
turbations that could trigger an attack.

Huang et al. [17] evaluated the effectiveness of three port-scan attack detec-
tion models for Software Defined Networking (SDN) environments: MLP, Convo-
lutional Neural Network (CNN), and Long Short-Term Memory (LSTM) against
the FGSM attacks. Martins et al. [23] found that FGSM attacks reduced the
average performance of RF, SVM, Decision Trees (DT), Naïve Bayes (NB), and
Neural Network (NN) classifiers. Sriram et al. [34] evaluated the performance
of DNN, RF, Support Vector Machine (SVM), NB, and DT classifiers against
FGSM attacks on the NSL-KDD dataset (See footnote 1). Debicha et al. [10]

1 See https://www.unb.ca/cic/datasets/nsl.html [May 2024].
2 See https://ieee-dataport.org/documents/nss-mirai-dataset [May 2024].
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concluded that DNN detection model performance was considerably degraded
by FGSM attacks.

As indicated by the existing literature, detection models fail to withstand
novel adversarial attacks that are considered serious threats. The literature only
demonstrates how attacks have high rates of evasion; it fails to show how real and
effective the generated adversarial traffic is. In real-world attacks, it is essential
to illustrate how generic evasion adversarial attacks can be done realistically.
Moreover, the majority of studies have focused on the consequences of adver-
sarial attacks within conventional IP networks [10,11,18,24,31]. Conversely, it
is imperative to evaluate security threats in other networking landscapes like
smart grids given their critical role of hyper-connected CIs in this digital age.

Based on the previous research, we did not find any research that has verified
the realism of adversarial attacks in smart grid networks. Therefore, this paper
proposes a realistic approach to modelling adversarial attacks against ML-IDS for
smart grid communication by identifying the necessary conditions are required
for the attacker to launch such attacks. More importantly, this research develops
a reasonable attack model and assumptions and uses real power system datasets.

2.5 Limitations of Previous Research Studies

There were three specific shortcomings of the studies that had been published
earlier. First, previous studies failed to observe traffic domain constraints regard-
ing how they created adversarial attacks to maintain the validity and func-
tionality of attack traces. Second, previous studies assumed that the adversary
can manipulate or control the number of features without restraint. This would
potentially lead to disruption of the semantic connections between interdepen-
dent features. Realistically, this assumption may not always hold true in some
scenarios because the adversary may be an outsider or may not understand the
inner operations of an IDS. Finally, previous studies worked under the condi-
tionality that the threat model is white-box, meaning the adversary has full
knowledge of all the parameters of the targeted model, which can be unrealistic
in many real-world cases.

3 Case Study

For our case study, we use publicly available power system datasets developed
by Mississippi State University and Oak Ridge National Laboratory3. Figure 1
depicts the power system framework configuration and components utilized to
generate datasets for this research. The power system includes the following
components:

– There are two main power generators (G1 and G2).

3 See https://sites.google.com/a/uah.edu/tommy-morris-uah/ics-data-sets [05/24].

https://sites.google.com/a/uah.edu/tommy-morris-uah/ics-data-sets
https://sites.google.com/a/uah.edu/tommy-morris-uah/ics-data-sets
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https://sites.google.com/a/uah.edu/tommy-morris-uah/ics-data-sets
https://sites.google.com/a/uah.edu/tommy-morris-uah/ics-data-sets
https://sites.google.com/a/uah.edu/tommy-morris-uah/ics-data-sets
https://sites.google.com/a/uah.edu/tommy-morris-uah/ics-data-sets
https://sites.google.com/a/uah.edu/tommy-morris-uah/ics-data-sets
https://sites.google.com/a/uah.edu/tommy-morris-uah/ics-data-sets
https://sites.google.com/a/uah.edu/tommy-morris-uah/ics-data-sets
https://sites.google.com/a/uah.edu/tommy-morris-uah/ics-data-sets
https://sites.google.com/a/uah.edu/tommy-morris-uah/ics-data-sets
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Fig. 1. Power System Testbed [2].

– The Intelligent Electronic Devices (IEDs) R1, R2, R3, and R4 activate the
breakers (BR1, BR2, BR3, BR4), which automatically protect electrical cir-
cuits from short circuits.

– Each IED controls a single breaker (for example, R1 controls BR1, R2 controls
BR2, and so on).

– IEDs lack internal validation; instead, they use a directional relay to trip the
breaker in case a fault is detected, regardless of validity.

– System operators can manually trip the breakers by sending commands to the
IEDs. To maintain lines as well as system components, operators use manual
override.

– The testbed includes additional network monitoring and detection tools, like
SNORT and Syslog servers.

3.1 Dataset Description

This dataset contains 128 features from two categories: 1) Phasor Measurement
Units (PMU) and 2) logs from the Control Room. With a total of four PMUs, 29
measurements are obtained from each PMU, resulting in 116 features in total.
The logs from the control room are categorized into SNORT, control panel, and
relay logs, each category with four features. In total, the control role logs have
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12 features. More details about the dataset and the description of the features
can be found in the original dataset description document [2].

3.2 Simulated Attacks

From the testbed, a data set of malicious and benign data was created. Three
main categories are used to classify the data: instances with ’no events’, instances
with ’natural events’, and instances with ’attack events’. ’No event’ and ’natural
event’ are combined to signify benign activity. During the simulation, five dif-
ferent attack scenarios were launched at the power system. The attacks include:

– Short-circuit fault. This is a power line short circuit that may occur at
any distance along the length of the line. The percentage range serves as the
location indicator.

– Line maintenance. To do maintenance on a particular line, one or more
relays are disabled.

– Remote tripping command injection. This attack works by sending a
command to a relay that will open a breaker. It is accomplished only after
an attacker has penetrated through the outside defence layers.

– Alter relay settings. In this form of attack, relays have distance protection
implemented. In order not to cause the relay to trip at the receipt of a valid
command or a fault, the attacker proceeds to change the relay configuration
to remove the relay functionality.

– Data injection attack. Data injection attacks are considered cyberattacks
directed at CIs such as power grids. Attackers manipulate system sensors
or use other control communication pathways to insert inaccurate data into
system control. It can result in erroneous actions that precipitate problems
such as instability or blackouts. For instance, an attacker can deliberately fake
a power surge or a fault to compel the system to take unnecessary protective
actions that interfere with the power supply or cause a blackout.

3.3 Attacker Capabilities

In this research, we model realistic adversarial attacks against Machine Learning
NIDS (ML-NIDS) by adopting the taxonomies of Apruzzese et al. [5]. To model
them, we evaluate the realistic capabilities of an attacker. This demonstrates
how much control the attacker has over the target model. This shows how much
control the attacker has over the target detection system. The attacker can have
access to the following five elements, as highlighted in Fig. 2.

– Training Data represents the ability to obtain the dataset required to train
the ML-NIDS. There are three types of access: read-only, write-only, and no
access.

– Feature Set indicates the understanding of the features that the IDS employs
to continue the detection. There are three types of it: full knowledge, partial,
and none.
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Fig. 2. Power capabilities accessible by the attacker. [5].

– Detection Model describes a situation whereby the trained machine learn-
ing model is employed in the NIDS and used for the detection. This informa-
tion can be obtained in part, in full, or none at all.

– Oracle component illustrates how to obtain a response from the IDS output
to an attacker manipulation input. The attacker may get no feedback, limited,
or unlimited feedback.

– Manipulation Depth pertains to the degree or level of an adversary manip-
ulation that can either analyse the problem space or feature space.

3.4 Threat Model

In this paper, we examine the risk posed by an insider threat actor with admin-
istrative access privileges to the network systems of the smart grid network.
Insider threats represent a significant yet often overlooked danger to CI [12].

In other words, identifying and mitigating insider threats is a challenging
and multifaceted endeavor due to the fact that insiders may have access to
the network and often reside within enterprise-level security [22]. The German
Federal Office for Information Security defines insider threats as individuals who
can potentially misuse their access to information technology systems, sensitive
data, or infrastructure. The following groups are specifically regarded as insider
threats [1]:

– An individual who has direct access and physically interacts with control
systems, such as operators or engineers.

– An individual with privileged access rights, such as system administrators.
– Anyone who has indirect access to the office network..
– Outsourced personnel or external service providers like those who develop

and maintain software, suppliers, etc.

These adversaries can deploy several attacks, including:
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– Social engineering can be employed to plan follow-up attacks. This involves
identifying vulnerable employees, learning about internal processes, and map-
ping out the IT infrastructure to find potential weaknesses.

– Unauthorized acquisition or alteration of confidential data may occur when
an individual accesses file servers, data storage media or historians. Primarily,
the motives of such an attack are industrial espionage and whistle-blowing.

– Deliberate acts of sabotage against the company. This may include an attacker
modifying control components or installing malware in the system for political
or economical reasons. These actions, which may involve an attacker changing
control components or installing malware in the system, may be driven by
political or financial interests.

As shown in Fig. 3, our research is based on a realistic scenario where an
insider already possesses legitimate access to the smart grid network through
privileges such as administration and physical access. The network has an ML-
NIDS model that should be able to detect any network attack. Given the dif-
ficulties associated with analyzing individual packets, this study considers the
NIDS to be a flow-based system rather than a packet-based system in high-speed
network environments. In the power system scenario presented in Sect. 3, given
the capabilities of the attacker in Sub-Sect. 3.3, it is presumed that the adversary
is interested in launching an evasion attack. Given the adversary’s position, it is
assumed that he or she is familiar with the features used by the IDS for classifi-
cation; nonetheless, he or she is unfamiliar with the detector’s specific algorithm
configuration. The attacker’s primary objective is to identify how to circumvent
the NIDS. This will allow him/her to either launch more damaging attacks in the
future or exploit the organization for personal gain by selling this information
to competitors, ultimately leaving the organization exposed and susceptible to
harm. Due to the knowledge acquired by the adversary, this type of attack can
be classified as a grey box attack. This threat scenario presented in Fig. 3 was
used to generate adversarial data for testing on trained ML model as presented
in Sect. 5.

4 Attack Generation

This research examines the use of JSMA and FGSM attack techniques in a grey
box setting, where the attacker is aware of the complete datasets and the features
but is unaware of the target model. Even if the attacker has no information
about the target model, generating samples that will force the target model to
declassify the given model, particularly using other ML models, will be possible.
This is because adversarial samples are transferable across different ML models.

When creating adversarial traffic, there are four key steps involved, as
depicted in Fig. 4. In the first step of this attack model, the attacker gener-
ates adversarial traffic to deceive the surrogate model, which was trained by
sniffing the actual traffic flows. In step 2, adversarial traffic that goes unde-
tected by using the surrogate model is received and analyzed by the attacker.
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Fig. 3. Illustration of the considered threat scenario

The transferability feature is employed by the attacker in step 3 to send the
adversarial traffic to defender NIDS. The adversarial traffic that managed to
get past the defender NIDS will reach the insider threat actor’s computer in
step 4. In this research, the attacks were implemented through the Adversarial
Robustness Toolbox (ART)4. ART is a Python tool that can generate various
adversarial attacks.

Fig. 4. Illustration of the adversarial traffic generation.

4 See https://github.com/Trusted-AI/adversarial-robustness-toolbox [05/24].

https://github.com/Trusted-AI/adversarial-robustness-toolbox
https://github.com/Trusted-AI/adversarial-robustness-toolbox
https://github.com/Trusted-AI/adversarial-robustness-toolbox
https://github.com/Trusted-AI/adversarial-robustness-toolbox
https://github.com/Trusted-AI/adversarial-robustness-toolbox
https://github.com/Trusted-AI/adversarial-robustness-toolbox
https://github.com/Trusted-AI/adversarial-robustness-toolbox
https://github.com/Trusted-AI/adversarial-robustness-toolbox
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4.1 Machine Learning-Based NIDS

This research uses some classical ML algorithms to assess how effectively super-
vised classification techniques can learn to detect cyberattacks in a smart grid
environment. On the defender side, the defender uses Random Forest (RF),
Naive Bayes (NB) and XGBoost (XGB) algorithms as a model for the NIDS.
We selected these three ML models for our work because of their wide usage by
the research community [21,25]. Additionally, the selected methods are easy to
implement, less computational cost is needed, and they work well with anno-
tated data, making them a suitable choice for our NIDS. Figure 5 illustrates how
these algorithms use the same training and testing procedures. The experimen-
tal setup offers a standard platform for performance comparison, which aids in
determining which model performs the best.

4.2 Hyper Parameters Optimization

XGboost and Naive Bayes models were trained using the default parameters
provided by the scikit-learn framework5. To ensure optimal performance of RF
as recommended by Zhu et al. [38] key tunable hyperparameters were applied,
including the number of trees (100), the split method (Gini), and the minimum
number of samples required to split (2). Hyperparameter tuning fixes the best
value from the search space for the algorithm’s parameters. Even though hyper-
parameter tuning was not conducted in this study, it opens an opportunity for
future research.

4.3 Model Training and Testing

To ensure the usability of the research results, the original dataset was divided
into subsets and stratified based on their labels. Both the data subsets are the
same in terms of size as well as distribution of data. The first subset is assigned
for training and evaluation on the defender side. As shown in Fig. 5, the second
dataset is used by the attacker to train a surrogate model. Section 3 details how
an insider threat scenario can make an attacker obtain this data through network
sniffing. To validate the data, the datasets of the defender and the attacker are
divided based on 70% of the training data and 30% of the testing data. In both
training and testing datasets, malicious traffic is equal to benign traffic. The
datasets are divided in this way to be as balanced in representation as possible,
thereby minimizing the issue of data imbalance.

While this is a requirement to get the most of our envisaged IDSes, it is
not essential to the actual claim of the paper. We are aware of the fact that
real traffic data may be rather unbalanced and tuning the IDS to work in those
contexts may overcome that problem. However, our evasion attack methodology
is not dependent on this aspect. As shown in Fig. 5, the threat model follows the
same training and testing process. Besides, the standard ML evaluation metrics
were used to measure the performance of the threat models.
5 See https://scikit-learn.org/stable/ [05/24].

https://scikit-learn.org/stable/
https://scikit-learn.org/stable/
https://scikit-learn.org/stable/
https://scikit-learn.org/stable/
https://scikit-learn.org/stable/
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Fig. 5. The training and testing pipeline for an attacker and a defender.

4.4 Performance Metrics

Various evaluation metrics can be utilized when assessing the performance of
different IDS models [15]. As shown in Table 1, all the metrics are based on the
confusion matrix.

Table 1. IDS Confusion Matrix

Actual Class Predicted Class
Anomaly Normal

Anomaly True Positive (TP) False Negative (FN)
Normal False Positive (FP) True Negative (TN)

– Recall, which is sometimes called the “detection rate,” helps quantify the
proportion of actual positive instances that are correctly identified by the
model.

Recall =
TP

TP + FN
(3)

– Precision evaluates the accuracy of the positive predictions made by a model.
Specifically, precision measures the proportion of predicted positive instances
that are correct.

Precision =
TP

TP + FP
(4)

– The F1 score provides the performance of the combined metrics and is calcu-
lated as the harmonic mean of recall and precision. In this respect, the use of
the F1 score allows the system not only to offer relevant results but also to
refuse the others.

F1 =
2 ∗ Precision ∗ Recall

Precision + Recall
(5)
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5 Evaluation

This section details the experimental findings. In Sub-Sect. 5.1, the performance
of the attacker and defender models on the given metrics, such as F1 score,
precision, and recall, is discussed. Moreover, a discussion of the model’s ability to
perform in an adversarial environment is discussed in Sect. 5.2. Lastly, a detailed
analysis of the perturbation difference between the initial malicious instance and
the adversarial instance is also provided.

5.1 ML-IDS Model Performance in Clean Settings

Different metrics are used to evaluate the model on clean settings, from both the
attacker and defender perspectives. These include recall (Eq. 3), precision (Eq. 4),
and F1-score (Eq. 5). In clean settings, the ML-IDS models performed binary
classification to distinguish between malicious and benign traffic. As shown in
Table 2, the performance of the trained ML models. XGBoost performed better
compared to Naive Bayes and the Random Forest models. In general, these initial
results demonstrate a good performance of the Random Forest and XGBoost.
The F1 scores achieved by the classifiers were 0.845, 0.567 and 0.925 respectively.

Table 2. ML-IDS model performance in clean settings

Classifier Accuracy Precision Recall F1 Score Time (s)

Random Forests 0.8473 0.8655 0.8473 0.8454 30
XGBoost 0.9464 0.9075 0.9464 0.9252 45
Naive Bayes 0.5742 0.5831 0.5742 0.5673 24

5.2 ML-IDS Models Performance in Adversarial Settings

In this sub-section, we demonstrate that applying the perturbations using JSMA
and FGSM reduces the performance of our trained model. Further, we check
whether the missed attacks (in the bigger false negative set) are still attacks
and whether they will inpact the power system. To investigate how different
parameter combinations can affect the model performance, multiple adversarial
samples were created from the testing data using epsilon (ε) values ranging from
0 to 0.45 Although the current literature does not recommend a standard value
for ε, in our research, we adopted a range between 0 to 0.45 to test attack success
rates as suggested by Goodfellow et al. [14].

The adversarial dataset was then generated using different (ε) values. To
determine how the performance of the models could be affected, the adversarial
samples were then combined with the benign testing data and tested on the
trained model. Figure 6 shows the overall performance for different adversarial
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combinations. As the (ε) values increased, the model accuracy decreased further.
For instance, XGBoost performance decreased from 94.64% at (ε) = 0 to 72.03%
at (ε)= 0.45. On the other hand, Random Forest performance decreased from
84.73% at (ε) = 0 to 68.02% at (ε) = 0.45. Lastly, the performance for Naive
Bayes decreased from 57.42% at (ε) = 0 to 32.05% at (ε) = 0.45. For FGSM
adversarial attack, the attack success rate increased with higher (ε) values hence
the accuracy declined because to the ML model was deceived by the attack.

Fig. 6. Performance of trained models in adversarial settings when increasing pertur-
bations (ε).

Selecting an appropriate (ε) value that will control the perturbation size is
very crucial, as a higher (ε) value may increase attack success rates but may
also increase the detectability of the adversarial samples. Small perturbations
are ideal for launching a realistic attack and remain undetected by the IDS. For
instance, when ε = 0.05, the XGBoost accuracy dropped from 94.64% to 88.04%
while Random Forest accuracy dropped from 84.73% to 78.43% and the Naive
Bayes accuracy dropped from 57.42% to 52.89%. To consider another instance,
when ε = 0.001, XGBoost accuracy dropped from 94.64% to 92.36%, the Ran-
dom Forest accuracy dropped from 84.73% to 82.67% and Naive Bayes accuracy
dropped from 57.42% to 55.32% as detailed in Table 3. As per the adversarial
performance, all the metrics declined in comparison to the performance of the
original datasets in a clean setting.

Naive Bayes exhibited a greater performance drop compared to Random
Forest and XGBoost. This could indicate that malicious data is misclassified
by Naive Bayes due to its increased sensitivity. On the other hand, XGBoost’s
classification performance was better. This could suggest that XGBoost is a more
reliable classifier when it comes to accurately discriminating between malicious
and benign data. The first experiment focuses on JSMA, as indicated in Table 4,
to investigate the effects of adversarial instances generated in our evasion attack
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Table 3. Degradation of trained models in FGSM adversarial settings (ε = 0.001).

Classifier Accuracy Precision Recall F1 Score

Random Forests 0.8267 0.6667 0.8267 0.6656
XGBoost 0.9236 0.7690 0.9236 0.7493
Naive Bayes 0.5532 0.2808 0.5532 0.2976

and the success of transferring adversarial instances generated by the attacker
to the defender’s trained model.

To analyze the impact of adversarial instances, recall is used as the detection
rate parameter. It quantifies the number of adversarial occurrences classified
by the IDS as malicious. The attacker initially creates adversarial instances for
each model learned on his or her side (RF, XGBoost, and NB). The adversarial
examples generated for one model are then transferred to the other models to
determine the transferability of the attacker’s trained models.

Table 4. Degradation of trained models in JSMA adversarial settings.

Classifier Accuracy Precision Recall F1 Score

Random Forests 0.6416 0.6605 0.6434 0.5980
XGBoost 0.7090 0.7289 0.7355 0.7234
Naive Bayes 0.2934 0.2789 0.2978 0.2784

Further, we investigated the incorrectly classified inputs to see if they could
cause harm. For example, we use JSMA to alter the features of a malicious data
point using various variants of θ and γ. These examples show that the greater
the value of θ, the greater is the perturbation of the features. The R1-PA1:VH
feature shows an increase from 0.7545 to 0.7550 for θ = 0.1 and 0.5, and to 1 when
θ = 0.9. Similarly, the greater the value of γ, the more features are manipulated.
Similarly, the higher the value of γ, the more features are perturbed. Table 5
illustrates the frequency of transmitted power features R1:F, R2:F, R3:F, and
R4:F.

The frequency of transmitted power for R1:F, R2:F, R3:F, and R4:F increased
significantly from an average of 60 Hz to an average of 62 Hz after perturba-
tion. In power systems, the frequency of transmitted power from the grid is kept
within a certain range, usually around 60 Hz in North America and 50 Hz in
other regions of the world. Maintaining the frequency within the allowed range
is critical for the power grid’s reliable operation and preventing damage to con-
nected equipment. If the frequency were to rise above 60.3 Hz, several issues
could arise [7]. Therefore, from our results, we are confident that this partic-
ular attack that was undetected could damage the system, disrupt industrial
processes, or cause harm.
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Table 5. An example of how the frequency of transmitted power features are perturbed
using JSMA.

Dataset R1-PA1:VH R1:F R2:F R3:F R4:F

Original Test Data 0.7545 59.986 59.986 59.984 59.988
θ = 0.1, γ = 0.1 0.7550 60.059 60.196 60.294 60.468
θ = 0.5, γ = 0.5 0.7650 61.574 61.754 61.537 61.643
θ = 0.9, γ = 0.9 1.0000 62.566 62.676 62.464 62.376

6 Conclusion

The increasing adoption of NIDS based on ML algorithms presents interesting
security challenges. Despite their exceptional performance, these ML models are
vulnerable to a wide range of adversarial techniques, including evasion attacks.
This paper demonstrated the importance of realistic threat modelling in the con-
text of adversarial attacks on smart grid systems. By highlighting real attacker
capabilities and feasible attack scenarios, this research provides a more practi-
cal and applicable perspective compared to the existing literature, which often
deals with hypothetical or idealized models. Moreover, this research performs
an empirical evaluation using a power system dataset generated from a smart
grid testbed, which adds significant value, grounding the theoretical insights in
real-world data.

To our best knowledge, this is the first realistic approach that aims to evade
the NIDS by leveraging on the transferability property without relying on any
query methods and with a minimal understanding of the target NIDS. This
approach operates within the traffic space and adheres to domain constraints.
This paper demonstrates a realistic adversarial approach designed to generate
valid and realistic adversarial network traffic by introducing minor perturbations.
This allows for bypassing the NIDS protection with a high probability while
preserving the core logic of the underlying model. The experiments detailed in
this research have shown that evasion attacks can be successfully generated using
JSMA and FGSM methods, impacting the classification performance of Random
Forest, Naive Bayes and the XGBoost ML models.

Furthermore, our results show that the same set of adversarial examples that
managed to deceive one classifier also succeeded in deceiving the other clas-
sifiers. For instance, the adversarial samples generated by FGSM managed to
decrease the performance of XGBoost from 94.64% to 72.03%, Random Forest
from 84.73% to 68.02% and Naive Bayes from 57.42% to 32.05%. This observa-
tion can be considered additional evidence for the transferability phenomenon
first alluded to by Papernot et al. [27] within the image recognition domain and
by Sheatsley et al. [33] within the network intrusion detection domain. Our work
in the smart grid domain makes it clear that all three classifiers are vulnerable
to adversarial perturbations.
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6.1 Future Work

In this research, we have shown how adversarial attacks can be generated suc-
cessfully by employing both the JSMA and FGSM methods and adversely affect
how state-of-the-art supervised models are classified. However, future studies
can consider how other methods, such as Carlini Wagner (CW) and Generative
Adversarial Networks (GAN) can be used to generate adversarial attacks. In this
regard, the current study can be extended and explored more in future works by
comparing how different methods of generating adversarial attacks are different
or the same. Moreover, adversarial attacks should be investigated against other
ML models.

The adversarial attacks against ML models are not limited to the domain of
IDS systems but to all systems where ML techniques are implemented. Future
research in areas like federated learning can consider the direction of awareness,
defence, and mitigation of adversarial attacks against ML [8,26]. Therefore, it
would be interesting for further studies to evaluate the applicability of the pro-
posed model in a distributed setting. As mentioned before, there is a great need
for research on suitable mitigation techniques against adversarial threats.
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